Good Ideals in Gorenstein Local Rings
نویسنده
چکیده
Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter ideals Q in A. A basic theory of good ideals is developed in this paper. We have that I is a good ideal in A if and only if I2 = QI and I = Q : I. First a criterion for finite-dimensional Gorenstein graded algebras A over fields k to have nonempty sets XA of good ideals will be given. Second in the case where d = 1 we will give a correspondence theorem between the set XA and the set YA of certain overrings of A. A characterization of good ideals in the case where d = 2 will be given in terms of the goodness in their powers. Thanks to Kato’s Riemann-Roch theorem, we are able to classify the good ideals in two-dimensional Gorenstein rational local rings. As a conclusion we will show that the structure of the set XA of good ideals in A heavily depends on d = dimA. The set XA may be empty if d ≤ 2, while XA is necessarily infinite if d ≥ 3 and A contains a field. To analyze this phenomenon we shall explore monomial good ideals in the polynomial ring k[X1,X2,X3] in three variables over a field k. Examples are given to illustrate the theorems.
منابع مشابه
F -stable Submodules of Top Local Cohomology Modules of Gorenstein Rings
This paper applies G. Lyubeznik’s notion of F -finite modules to describe in a very down-to-earth manner certain annihilator submodules of some top local cohomology modules over Gorenstein rings. As a consequence we obtain an explicit description of the test ideal of Gorenstein rings in terms of ideals in a regular ring.
متن کاملAdjoint ideals and Gorenstein blowups in two-dimensional regular local rings
In this article we investigate when a complete ideal in a twodimensional regular local ring is a multiplier ideal of some ideal with an integral multiplying parameter. In particular, we show that this question is closely connected to the Gorenstein property of the blowup along the ideal.
متن کاملA Cancellation Theorem for Ideals
We prove cancellation theorems for special ideals in Gorenstein local rings. These theorems take the form that if KI ⊆ JI, then K ⊆ J.
متن کاملQuasi-socle Ideals and Goto Numbers of Parameters
Goto numbers g(Q) = max{q ∈ Z | Q : m is integral overQ} for certain parameter ideals Q in a Noetherian local ring (A,m) with Gorenstein associated graded ring G(m) = ⊕ n≥0 m /m are explored. As an application, the structure of quasisocle ideals I = Q : m (q ≥ 1) in a one-dimensional local complete intersection and the question of when the graded rings G(I) = ⊕ n≥0 I /I are Cohen-Macaulay are s...
متن کاملHilbert Functions of Gorenstein Monomial Curves
It is a conjecture due to M. E. Rossi that the Hilbert function of a one-dimensional Gorenstein local ring is non-decreasing. In this article, we show that the Hilbert function is non-decreasing for local Gorenstein rings with embedding dimension four associated to monomial curves, under some arithmetic assumptions on the generators of their defining ideals in the noncomplete intersection case....
متن کامل